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Integrating Object Affordances with Artificial
Visual Attention
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Abstract. Affordances, as for example grasping possibilities, are known
to play a role in the guidance of human attention but have not been
considered in artificial attention systems so far. Extending our earlier
work, we investigate the combination of affordance estimation and visual
saliency in an artificial visual attention model. Different models based
on saliency, affordance estimation, or their combination are suggested
and evaluated via their predictions for a change detection task with hu-
man observers. Furthermore, we discuss the potential of Growing Neural
Gases as a framework for consistently integrating bottom-up saliency,
affordance-based and top-down attention mechanisms.

Keywords: Attention, Saliency, Affordance

1 Introduction

With the transition of robots from specialized automata performing predefined
tasks to general autonomous agents, the requirements to perceive, reason about,
and interact with their environment have drastically increased. A recent devel-
opment in robotics is to model aspects of environmental psychology, which deal
with the interaction between humans and their surroundings. A popular concept
from this field, the affordance of objects, was introduced by J. J. Gibson in 1977
[1]. In this holistic view, objects possess certain affordances, i.e., objects or their
parts can afford certain actions. A common example is a mug, whose handle
affords grasping.

This idea has been transferred to technical systems to enhance their perfor-
mance preparing and executing actions that correspond to such affordances (see
e.g., [2–4]). One result of such studies—as well as of earlier general object recog-
nition studies (e.g., [5, 6])—is that the affordance concept in technical systems
not only supports direct grasping actions, it can also benefit object recognition
and semantic scene perception. The general idea is that in many cases an ob-
ject is better defined by the actions which the object supports, than with its
visual attributes. Coming back to the example of a mug, even though colors
and shapes may differ widely, mugs in general afford grasping (possibly by some
kind of handle), containing liquid and drinking [7]. Therefore, recent research
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2 Jan Tünnermann, Christian Born & Bärbel Mertsching

integrates affordance estimation with object recognition (e.g., [8, 7]) and the se-
mantic interpretation of scenes and objects (e.g., [9, 10]).

Visual attention is another concept which is being transferred from cognitive
psychology to technical systems. The main idea is to filter relevant from irrel-
evant information very early in processing, and distribute processing resources
accordingly. Attention can be guided bottom-up by saliency—local contrasts
with respect to features such as intensity, color, or local orientation [11]—or in
a top-down manner by incorporating knowledge, such as task demands [12] or
the “gist of the scene” [13].

Findings from psychology suggest that affordances influence visual attention.
This has been shown in reductions of reaction times when affordances were used
to guide attention towards target locations [14, 15] and effects on event related
signals in electrophysiological and brain imaging research [16].

The influence of affordance on visual attention can be regarded as a way to
bias the distribution of processing resources towards objects that afford actions.
These constitute potential targets of actions or reasoning, even though a specific
behavior towards them may not be planned at this stage.

Fig. 1. a: A test scene. Inset: exemplary grasps fitted on a sparse 3D scene repre-
sentation. b: Grasp points projected into 2D. White patterns represent grasps to-
wards reachable locations, whereas red patterns indicate locations out of reach. “A”
affordance-based, “S” saliency-based, and “A+S” combined selection. c–e: Underlying
affordance (c), saliency (d), and combined (e) maps.

Recently, we investigated whether an artificial visual attention model can
better predict human performance in an attention guided task when the predic-
tion is based on affordance estimation instead of saliency estimation [17]. We
found that this indeed is the case. Utilizing a change detection task, we com-
pared a popular saliency model [11] with an attention model based on grasping
hypotheses (estimated from a sparse scene representation [18], see figure 1a).
The phenomenon of change blindness due to short scene interruptions renders
the detection of changes in objects difficult, but the performance is increased
when attention is allocated to the changing part of the scene [19]. For the evalu-
ation of psychologically inspired computer vision systems, the change blindness
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Integrating Object Affordances with Artificial Visual Attention 3

paradigm has the great advantage that images with natural scenes can be used,
whereas many other psychophysical tasks require the use of highly artificial syn-
thetic stimuli. We found that human observers performed better in reporting
the changes that were made to objects selected by the affordance-based model
than when those selected by the saliency model were changed.

In the present study, we extend our previous work [17] to investigate a model
based on combined affordance and saliency, as opposed to the models that used
either individual component. If this enhances the prediction of change detection,
it may better reflect the allocation of attention. This may be the case, for ex-
ample, when there are several objects of high affordance and their individual
saliencies tip the scale for selection priority.

The present paper is an update of the report we presented at the First Work-
shop on Affordances: Affordances in Vision for Cognitive Robotics [20] and is
structured as follows: In section 2, we report a new change detection experiment
that uses the stimulus material already used in [17] but a different task. This is
to test this task and get a preliminary insight how saliency and affordance are
related in this stimulus material. In section 3, we describe a prototypical model
of combined saliency and affordance which is used to create new test images
to evaluate the combination of saliency and affordance (in section 3.2) in the
change-blindness task. Finally, in section 4 we discuss Growing Neural Gases as
a framework for an artificial attention model that we believe has the potential
to integrate bottom-up saliency, affordance-based attention and top-down atten-
tion in a consistent architecture and improve on several disadvantages of current
attention systems.

The implications are discussed in section 5.

2 Saliency and Affordance in Change Detection

2.1 Experiment I - Motivation

In our previous study [17], we employed a “single-shot” change detection task
with natural images (see e.g., [21]) to measure the participants’ distribution of
attention towards salient or affording objects. The single-shot paradigm shows a
single change from the original to the altered image which are shown only briefly
(usually between 100 and 500 ms) and a blank screen is shown between the two
images. The presentation usually lasts for less than a second and participants
respond afterwards, when the image is already gone. Thus, there is only a single
binary hit-or-miss measurement per change. Furthermore, the same images can-
not be repeated and therefore the amount of trials is limited to the number of
available images. Their creation is quite an effort, due to editing in the changes
(object removals in our case). Because of the limited number of trials and the
binomially distributed response, a large number of subjects is required (40 - 80)
to obtain reliable results. In our previous study there were two possible changes
for every image—saliency or affordance—and thus two subjects were required to
obtain an affordance and saliency measurement for every image. In the experi-
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4 Jan Tünnermann, Christian Born & Bärbel Mertsching

ment we report in section 3.2, three changes were possible. This further increases
the number of subjects required.

Hence, in this experiment, we test the so called “flicker paradigm” (see e.g.,
[19]): the presentation is similar as described above, but it is repeated until the
change is reported. Therefore, a more informative measure, namely the time it
takes the subject to detect the change, can be obtained. This not only reduces
the number of participants required, but may also allow to relate the degree of
affordance and saliency to the response time. Therefore, the objective of this
first experiment is, using the stimulus material from [17], to investigate whether
the effect that affordances are more important than saliency in change detection
can be replicated using the flicker paradigm. Furthermore, a first insight in the
influence of the saliency and affordance values on the response time is provided.

Participants: Twelve volunteers (average age of 26.82, SD = 3.6) participated
in this experiment. All had normal or corrected-to-normal vision and not seen
the images before.

Stimuli: The stimulus material reported in [17] was used. This consisted of 28
natural scenes, mostly pictures of office environments that contained a number of
objects in the reachable action space and some in background areas which would
not be reachable by the observer of the scene. For every image, two changed ver-
sions were created by locally altering the image (locally blending in an identical
image in which the object had been removed at that location). In one altered
image of the same scene, an object selected by the saliency model by Itti et
al. [11] had been removed, in the other altered image, one object selected by
an affordance-based prediction (density of grasping possibilities per image area;
this corresponds to the affordance stream described in see section 3.1) had been
removed. Refer to [17], for more details regarding the stimulus generation and
the actual pictures.

Design and Procedure: The experiment was conducted on a 12.1” touch-
screen laptop1. The participants were instructed to normally sit in front of the
laptop and to adjust the distance and display angle for optimal viewing and
touching.

Participants were presented with every original image paired with one of the
possible changes. Thus, a single participant saw 14 original–affordance and 14
original–saliency pairs in random order. The number for which each changed
image appeared with the affordance or saliency change was balanced over all
subjects.

In contrast to the task used in [17], where participants saw the change only
once (from original to the changed version), here the images cycled back and

1 Note that the change blindness effect is very robust and does not require highly ac-
curate timing that can only be established with CRT monitors or specialized equip-
ment, which is the case for many other psychophysical paradigms.
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Integrating Object Affordances with Artificial Visual Attention 5

forth between the original and the changed image until the subject discovered
the change and responded by touching the screen at the location of the change.
If no response was made within one minute, the current trial was aborted and
the next trial started. The timing of the image sequence was: “1000 ms ini-
tial blank”–“300 ms original image”–“300 ms blank”–“100 ms changed image”–
“300 ms blank”. The sequence after the initial blank was repeated until the
participant responded. The changed image was shown for a shorter time as we
are interested in the distribution of attention in the original image, reducing the
risk that highly salient (or affording) objects that become visible in the changed
image substantially influence the response. For every trial, the response time was
recorded.

a b
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Fig. 2. a: Average response times for affordance- and saliency-based changes (error bars
show the SEM; *** p < 0.001). b: Average response times (in milliseconds) of each
change plotted into the affordance–saliency space with the saliency and affordance val-
ues at the changed locations in the respective maps. Points with pink labels (“sX”) are
saliency-based changes, whereas yellow labels (“aX”) mark affordance-based changes
in images X. Because the most salient and most affording objects had been selected for
a change, they are set to maximum (1.0) in their respective dimension. The value for
the other dimension was obtained by averaging the respective map under the removed
object’s bounding rectangle.

Results and Discussion: Figure 2a shows the average response time to saliency-
and affordance-based changes. Affordance based changes are reported signifi-
cantly faster, t(11) = −5.03, p < 0.001, confirming our earlier results [17] from
the single shot hit-or-miss task. This provides further evidence for the impor-
tance of affordances in the deployment of attention. The one minute time limit
was reached only four times in the 336 changes presented over all subjects.

Furthermore, based on visual inspection, the distribution of responses times
per image in the affordance–saliency space (see figure 2b), suggest that no long
response times are found when a change has also high activity in the respective
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6 Jan Tünnermann, Christian Born & Bärbel Mertsching

other dimension. Especially for the saliency-based changes, long response times
occur where the affordance is close to zero. Therefore, an attention model that
combines saliency and affordance could show a better performance than models
based on each individual component. Such a combined model is described in the
following section and tested experimentally in section 3.2.

3 Combining Saliency and Affordance

3.1 A Combined Model of Saliency and Affordance

The proposed combined model of saliency and affordance is presented in figure 3.
The processing begins with the acquisition of a stereo image pair. The saliency
maps and the eventually combined attention map are based on the left image.
Therefore, the left image is segmented into homogeneously colored regions 1

(see [22] or [23] for segmentation methods for region-based attention on which
this model is based). These regions can be considered proto-objects, which at
pre-attentional stages are used for the feature and saliency computations and
later integrate the different saliency dimensions and the affordance estimation.

In the saliency stream, the regions are used to generate feature magnitude
maps for color, orientation, eccentricity, symmetry and size s2 . The feature
color is obtained as the average color of all pixels of a region. Orientation,
eccentricity and symmetry are calculated based on 2D central moments of the
spatial distribution of a region’s pixels. Size is the number of pixels in a region.
For details on the calculation of feature magnitudes, please refer to [24]. As a
next step in this stream, saliency maps are calculated for each feature dimension
individually s3 . This is done by applying a voting style procedure, where each
region collects votes from its neighbors, regarding the dissimilarities in every
feature dimension. Details on how the difference between two regions in a specific
feature dimension is measured can be found in [24].

In the affordance stream, the left image is used to generate 2D Texlets which
are small local texture patches a1 . Using stereo disparities a2 , the 2D Texlets

are transferred into 3D space to form 3D Texlets a3 . There, position-based k-
means clustering is used to form small groups of neighboring Texlets. Planes
are fitted through these groups to form so called Surflings a4 , which are then
further grouped (when close to each other and similarly oriented) to generate
Surfaces a5 .

Grasping hypotheses in 3D space are generated by fitting a simulated gripper
(see figure 1b) to elements of the scene considering the surfaces generated in
the process outlined above a6 . For details on the generation of this feature
hierarchy and the grasping hypotheses, see [18]. The result of this process, which
we make use of in this study, is the estimated contact points of the gripper on the
surfaces. Note that in the present study the simulated gripper performs simple
two-fingered grasping and does not include a bio-mechanic model of grasping.
The latter can be used to filter out grasping hypotheses which may not be
performable by the observer. The only criterion which is used to filter grasping
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Integrating Object Affordances with Artificial Visual Attention 7

hypotheses with regard to performability is a distance limit of 70 cm, which
roughly corresponds to human reaching distance.

The combined attention map is then obtained by integrating the individual
saliency maps s4 (according to the combination strategy described in [24], which
assigns higher weights to channels with sharp saliency peaks) and combining this
contribution from the saliency stream with the contribution from the affordance
stream using the regions which have been obtained during the initial segmen-
tation. While the saliency contribution is already in region-form, the grasping
hypotheses (represented by the contact points) are projected from 3D into 2D.
All points which fall into a certain region a7 + 2 are summed and normalized
by the region size to yield the affordance value of a region. Because the con-
tact points can often be found on the edges of objects (in their 2D projection),
instead of considering a single point in this process, each back-projected point
is expanded to 5 × 5 points in a square region surrounding the initial location,
which contribute decreasingly weighted with regard to their distance from the
original location. This can be seen in figure 1b.

Color

Orientation

Eccentricity

Symmetry

Size

Right Image

Left Image

Input

Segmentation

2D Texlets

3D Texlets

3D Grasping
Hypotheses

Color

Orientation

Eccentricity

Symmetry

Size

Combined
Attention

Map

Saliency Maps

Feature Magnitude Maps

Proto-Objects

Output

Focus of Attention

ECV Surface Hierarchy

Surflings

Surfaces

1

2

s2

a1

a2
a3

a4

a5

a6

a7

s3

s4

Fig. 3. Structure of the proposed model. The type and flow of data is described in the
main text referring to this figure.

When the estimated affordance is combined with the saliency, this can be
done in different ways. In principle, feature combination strategies as described
in [11] can be applied. For instance, the map providing a small number of strong
peaks could be preferred. Nevertheless, given that there is not yet any knowledge
on how affordance and saliency are supposed to combine, we perform a naive
combination. This is done by normalizing the values into the same dynamic range
(0 . . . 1) and then calculating a weighted average of affordance and saliency for
each region.

For the experiment reported in section 3.2, equal weights are used to obtain
the combined prediction. Weighting saliency one and affordance zero yields the
pure saliency-based prediction while the reverse results in the purely affordance-
based prediction.
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8 Jan Tünnermann, Christian Born & Bärbel Mertsching

3.2 Experiment II - Evaluation

This second experiment is based on predictions from the newly introduced model
that combines affordance and saliency estimation. It is intended to investigate
whether predictions based on combined saliency and affordance better reflect
human attention than the individual components.

Participants: Thirty volunteers (average age of 28.46, SD = 5.86) participated.

Stimuli, design and procedure: Stimulus material, experimental design and
procedure mostly correspond to the description of the first experiment in section
2.1. The only differences were the use of a new image set (see figure 4a) with an
additional third possible change based on the combined prediction with equally
weighted affordance and saliency contributions. Furthermore, the saliency-based
prediction was obtained with the region-based saliency model [24], which con-
stitutes the saliency channel in the combined model, in contrast to the first
experiment where the model by Itti and colleagues [11] was used.

Due to the fact that three predictions (affordance, saliency, combined) are
required for each image, and the images focus mainly on the action space where
saliency and affordance are both expected to be relatively high, sometimes the
same object was selected by two or all three predictions. In such a case, the scene
was slightly rearranged by unsystematically shifting objects or the camera sys-
tem, and the scene was rerecorded, until an image with three distinct predictions
was obtained.

a

(m
s)

b

c

Fig. 4. a: Changed locations marked in the original images (best viewed magnified in
the digital version). b: Average response times for the changes based on affordance,
saliency (region-based), and combined predictions (error bars show the SEM). c: Dis-
tribution of average response times (in milliseconds) per image and change, visualized
as in figure 2b. The numbers correspond to figure 4a.
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Integrating Object Affordances with Artificial Visual Attention 9

Results and Discussion: Figure 4b shows the average response times to
changes based on the (region-based) saliency, affordance, and combined pre-
dictions. According to an one-way repeated measures ANOVA, no effect of pre-
diction type was found, F (2, 29) = 0.63, p = 0.54. This is in contrast to the
result of our first experiment, where the responses to affordance-based changes
were significantly faster. Furthermore, the saliency conditions (from experiment
1 and experiment 2), as well as the affordance conditions (from each experiment),
differ significantly, t(40) = 5.82, p < 0.001 (affordance), t(40) = 4.3, p < 0.001
(saliency) according to Holm-Bonferroni corrected two-sided t-tests.

The long response times in the second experiment indicate that the task was
more difficult than in the first experiment. Moreover, the scenes were arranged
to contain a large number of affording objects in the action space and thus also
the saliency-based selections were mainly such foreground objects, whereas the
stimulus material used in the first experiment contained saliency-based changes
which were frequently in the background. In addition to the different scene ar-
rangement, the region-based saliency model may less often select locations in the
background where the contrasts are low, because such parts are often merged
into larger background regions with low saliency (see figure 1d).

Inspecting the distribution the individual changes’ average response times in
the affordance–saliency space (figure 4c), it can be seen that while the saliency-
based changes benefit from increasing affordance (response times decrease along
the affordance axis), the same is not the case for the affordance-based changes
which do not show a similar pattern. The changes based on the combined pre-
diction cluster at lower saliency and affordance values (which were obtained
by averaging the respective maps under the bounding rectangle of the removed
combined object). Those, which are particularly low, resulted in longer response
times. Notably, the one minute limit was reached twelve times for affordance- and
nine times for saliency-based changes, and only once in the combined condition.

4 Growing Neural Gases as an Architecture for
Combining Saliency, Top-Down Attention and
Affordances

The attention model in the present paper uses separate pipelines for estimating
affordances and saliency. Affordances are estimated based on the sparse scene
representation by a 3D feature hierarchy [18] and then fed into the region-based
attention framework [24, 25], in which saliency is computed, and for which top-
down mechanisms are available, e.g. [26, 27].

In the long term, a fully integrated architecture is desirable. In such a frame-
work, feedback loops, which are known to be highly important in biological
vision, can be established: results from higher levels of the architecture, such as
affordances or top-down information can be used to influence the generation or
propagation of the scene representation from lower levels. Furthermore, the inte-
gration of different dimensions, such as various saliency dimensions, specific and
gist-based top-down influences and object affordances benefits from a common
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consistent representation which can preserve the relative strength of each dimen-
sion’s contribution (a prerequisite for more advanced combination strategies as
suggested in [12]).

In this section we discuss Growing Neural Gases (GNG; e.g. [28]) as pre-
attentional structures for a fully integrated approach. GNGs have the promising
feature that they can be continuously updated as new visual information is ac-
quired. it is not required to completely start over with every new frame, a strong
drawback of current region-based architectures, which impairs the stability of
pre-attentional structures over time.

The GNG algorithm is an unsupervised learning technique, which uses a
growing network model. Nodes within a graph may be connected by edges and
possess attributes which represent the properties of the state space in which the
learning is performed (e.g. x- and y-positions if two dimensional positions are
learned).

While learning, examples are presented to the network. The algorithm de-
termines the node closest to the example according a distance measure on the
respective attributes of node and example. For this winning (closest) node and,
with a reduced strength, its topological neighbors (i.e. those directly connected
via a single edge) the properties are updated. Edges carry an age value, which is
increased with every update step. Additionally, a new edge is inserted between
the winning node and the runner-up or, if such an edge already exists, its age
is reset. Edges which are too old are deleted. Furthermore, each node carries a
problem domain dependent error value, which must have the characteristic that
it is reduced when a new node is inserted close to the given node. In GNGs this
insertion is done at fixed intervals. Therefore, the node with the highest error
value is determined, as well as its topological neighbor with the highest error
value. The new node is inserted between and connected with these two nodes,
replacing the original connection between them. The error value is redistributed
between all three nodes. This reduces the probability that the next insertion is
performed in the same area and thereby guides the growing of the network. Fur-
ther measures, such as an utility term that quantifies the usefulness of a node for
the network and may result in in deletion of the node, are introduced to avoid
the network to grow infinitely.

The algorithm is initialized with two connected nodes, which carry randomly
initialized properties and it results in a dynamically adapting set of nodes, with
changing neighborhoods. These neighborhoods can form multiple independent
graphs.

4.1 Pre-Attentional Structures and Saliency based on GNGs

GNGs can be adapted to generate pre-attentional structures similar to the re-
gions produced in the segmentation step of the region-based framework (see
section 3.1). Pixels of the image are chosen uniformly at random and used as
examples. These pixels have a position and color, which can be used to train the
GNG as described above. Distances of each neuron to the chosen pixel can be
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calculated by using, e.g., a weighted euclidean distances. Figure 5a depicts the
result of this procedure applied to a simple synthetic test image.

Fig. 5. a: Result of a prototypical implementation of GNG for generating pre-
attentional structures. Node colors reflect the color of the represented object. b: GNGs
may include useful candidates (two-node networks; white) for estimating grasp affor-
dances. Networks with more than two nodes are colored in gray.

For the resulting graphs, feature magnitudes and and then saliency can be
calculated using the methods described in [24]. Hence, where the positions of a
region’s pixels are considered to calculate central moments or other features, the
GNG nodes and their positions may be used in the same way.

4.2 Applying Top-Down Information in GNGs

As argued above, mechanisms from region-based attention can be easily trans-
ferred to GNG structures. Therefore, template networks can be obtained and
considered as described in [26] for region-based attention. Complex templates
consisting of several networks represent the analog to multi-region templates
introduced in [27].

Furthermore, as the transfer from pixels to the substantially smaller number
of neurons provides a simplified problem space, rough heuristics, such as for de-
termining the gist of a scene, may also benefit from a GNG-based representation.

4.3 Integrating Object Affordances in GNGs

On the one hand, pre-attentional structures obtained from GNGs may prove suf-
ficiently stable (as compared to segmented regions that often exhibit unstable
shapes) to apply appearance-based affordance estimation in local and global con-
texts as proposed by [29]. On the other hand, GNGs obtained with the described
procedure may provide easily identifiable candidates for graspable elements. Fig-
ure 5b shows GNGs obtained from a picture of a cooking pot with a handle
extracted from Song et al. [29]’s figure 4b (the pink dot was removed). High-
lighting only two-node networks, in agreement with the ground-truth for such
handles (see Song et al. [29]’s figure 2a, successfully detects the pot’s handle.
Such rough heuristics could be directly useful for generating local graspability
estimates which can then be fused with global estimates as in [29], or at least
provide candidates for more expensive follow-up processing.
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5 Discussion and Conclusion

The results of our first experiment further supports the idea that object affor-
dances are important for the spatial deployment of visual attention. In the sec-
ond experiment we did not find additional enhancements by combining saliency
and affordance. This is in line with another change blindness study [30], where
saliency did not further enhance the detection of changes in objects which are
shown in unusual contexts. Early attention appears to be strongly influenced by
the environment represented in the scene. The second experiment, however, did
also replicate the advantage of the affordance-based predictions over the saliency-
based predictions. This can originate from the use of a different saliency model,
from the use of a different set of stimuli, or a combination of both. The region-
based saliency model is not expected to yield predictions so much different in
general (see [25] for comparisons with the model from [11]). However, as ex-
plained in section 3.2, the arrangements in the test scenes differ from those used
in [17] in important aspects:

The scenes used in [25] contained salient—but ungraspable—objects in the
background, which were frequently selected by the saliency model. The scenes
used in experiment 2 focus on objects in the action space, as the goal was to
provide a variety of action space objects, which can exhibit different saliencies.
Several scenes, especially scenes 24 and 25 (see figure 4a), contain a large amount
of competing targets resulting in extreme response times for saliency as well
as affordance changes (see figure 4c). Hence, this stimulus material may not be
sensitive enough to reveal differences which may be small for these rather similar
action space objects.

An important next step in this line of research is a deeper integration of
affordance in attention systems. In the present study, affordance and saliency
were estimated based on separate low-level scene representations (a 3D feature
hierarchy and simple image regions). A more integrated approach (that does not
require a step such as the projection of 3D grasp hypotheses into 2D regions)
allows more sophisticated combination strategies on the basis of common pre-
attentional structure. As suggested by our results, future models that combine
saliency and affordance could employ strategies strongly biased towards affor-
dances when these are available in the scene and fall back to saliency only when
no other information is available.

The fact that affordance-based advantages are present in 2D images presented
to humans which depict foregrounds and background (as in our first experiment,
and the experiments reported in [25]), proves that binocularly cues are not nec-
essary for the effect in biological vision. Thus, a 2D dimensional retinotopical
structures would provide a useful domain for such a fully integrated approach.
We discussed Growing Neural Gases as a framework for this in section 4, which
may allow to integrate appearance based affordance-estimation as suggested by
Song et al. [29] with bottom-up and top-down attention in future work.

Our current approach focuses on estimating the affordance of scene elements
with respect to actions the system is able to perform towards these elements.
Following a different approach, work by Varadarajan & Vincze [31] includes
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Integrating Object Affordances with Artificial Visual Attention 13

further aspects of environmental psychology, such as the affordance relations
between the represented objects, in an attention model. A form of semantic
saliency is directly derived from such affordances. The procedure presented in
[31] obtains saliency from affordance aberrations, a measure of how unusual an
object appears in its local semantic context. In addition to successful application
in artificial vision, such models well predict the findings of [30] and others, which
indicate that semantic scene context outranks pure stimulus driven saliency in
early human vision.

With regard to our specific approach, a fully integrated approach and the
implementation of this attention system based on grasp affordances in a robot
with an articulated arm and gripper will allow a practical evaluation of the
proposed concepts.
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